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Abstract
Cloudera Impala is an open source massively parallel processing
(MPP) SQL query engine for data stored in Hadoop Distributed
File System (HDFS) and HBase. The High Performance Comput-
ing (HPC) domain has exploited high performance networks such
as InfiniBand for many years. InfiniBand network provides high
bandwidth and low latency. BigDataBench is a well known bench-
marking suite for Big Data applications that provides real work-
load scenarios. In this paper we first characterize BigDataBench
query workloads in Impala running in IPoIB mode on an InfiniBand
cluster and determine the time spent in I/O, communication and
computation. With full remote mode operations, we see that Big-
DataBench Queries run faster on InfiniBand QDR (IPoIB, 32Gbps)
compared to 10Gb Ethernet - Scan by 21%, Aggregate by 27%,
and Inner Join by 6%. Interestingly, although Join is most Com-
munication intensive, we did not see much difference in the overall
runtime of the query between InfiniBand QDR (IPoIB) and 10Gb
Ethernet. This is because the computation dominates the Join query
performance. Even though the network communication latency and
throughput on InfiniBand QDR was better than 10Gb Ethernet by
19%, there was no significant difference in the overall runtime of
the query. In the scalability study by increasing the number of com-
pute nodes in the cluster, we observed that Scan and Aggregate
queries scale linearly but the improvement in Join execution time is
negligible due to increased Computation. From these experiments
we see that although InfiniBand improves the Communication part
of Join query, the Join computation time in Impala needs to be op-
timized further so that we get more benefit in the overall query
execution time with high performance networks/protocols.

Keywords Cloudera Impala, InfiniBand, BigDataBench, Work-
load Characterization

1. Introduction
Big Data is fundamentally changing the way decisions are being
made in a wide range of domains including biomedical research,
Internet search, finance and business informatics, scientific com-
puting, and others. Big data can be analyzed with software tools
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commonly used as part of advanced analytics disciplines such as
predictive analytics, data mining, text analytics and statistical anal-
ysis. During the last decade, the Apache Hadoop [4] platform has
become one of the most prominent open-source frameworks to han-
dle Big Data analytics. The most recent IDC report [6], “Trends in
Enterprise Hadoop Deployments”, found that 32% of the compa-
nies had already deployed Hadoop. Not only for Enterprise Com-
puting, Hadoop has also been steadily gaining momentum in the
HPC community.

Cloudera Impala brings scalable parallel database technology
to Hadoop [19], enabling users to issue low-latency SQL queries
to data stored in HDFS and Apache HBase without requiring data
movement or transformation [3]. Impala is integrated with Hadoop
to use the same file and data formats, metadata, security and re-
source management frameworks. The fast response for queries en-
ables interactive exploration and fine-tuning of analytic queries,
rather than long batch jobs traditionally associated with SQL-on-
Hadoop technologies such as Hive [27]. Impala is promoted [1]
for analysts and data scientists to perform analytics on data stored
in Hadoop via SQL or business intelligence tools. The result is
that large-scale data processing (via MapReduce) and interactive
queries can be done on the same system using the same data
and metadata removing the need to migrate datasets into special-
ized systems and/or proprietary formats simply to perform analysis
[11]. Big Data Benchmark tests by Berkeley AMPLab shows that
Impala performs faster than Hive by 15X and Tez by 10X [5].

Impala is best suited for running Ad Hoc queries over a subset
of data to get fast results. But if we are analyzing huge amount of
data in a batch processing manner, then Hive is best suited for this
than Impala. For ETL type of jobs where failure of one job would
be expensive then Hive is the best option. Figure 1 shows how Hive
and Impala fit in the Hadoop ecosystem meant for serving different
use cases.

In this paper we evaluate the performance of Cloudera Im-
pala on two clusters with two High-Performance Networks Infini-
Band QDR (32 Gbps) / FDR (56 Gbps) and 10Gigabit Ethernet.
On InfiniBand clusters, Cloudera Impala runs with IPoIB mode.
We run BigDataBench Suite which provides benchmarking soft-
ware specific to Impala containing the query workloads [29]. Big-
DataBench provides data generation feature where we can specify
the amount of data in GB to be generated in HDFS.

An application/workload is said to be I/O intensive if it spends
most of the time doing I/O operations. The application is said to
be Compute intensive if it spends more time doing Computations
using the CPU. The application can be said to be Communication
intensive if the network time dominates both I/O and Compute
time. The Big Data applications can benefit from high performance
networks if the application is Communication intensive [25]. In this
paper we address the following questions:
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1. How to profile and characterize the BigDataBench workloads as
I/O, Communication, Compute intensive? Through this charac-
terization, can we identify the query workloads that are Com-
munication intensive?

2. In full remote mode setup of Impala which is more Communi-
cation intensive, how much benefit does InfiniBand QDR/FDR
provide compared to 10Gb Ethernet for each of the queries?

3. Increasing the number of compute nodes and fixing the data-
size, how much does the execution time of each of the queries
become better due to increased parallelism?

4. Increasing the datasize and fixing the number of compute
nodes, how does the execution time of each of the queries
change?

We perform detailed profiling and analysis of BigDataBench
workloads on Impala and characterize them as I/O, Communication
or Compute intensive. We then analyze the query performance on
two network interconnects InfiniBand QDR/FDR and 10Gb Eth-
ernet. We also perform scalability study of Impala with different
workloads. We observe that Scan and Aggregate workloads scale
linearly but Inner Join workload scales poorly. To the best of our
knowledge, this is the first paper for characterizing Cloudera Im-
pala workloads with BigDataBench on InfiniBand Clusters.

The rest of the paper is organized as follows. In Section II, we
present background about Impala and how the distributed query
execution takes place. In Section III, we describe the schemes used
for evaluation and in Section IV, we present the evaluation results.
Related works are discussed in Section V. In Section VI, we present
conclusions and future work.

2. Background
In this section, we provide an overview of Cloudera Impala, Infini-
Band and BigDataBench. We show how Impala is integrated into
the Hadoop environment and utilizes a number of standard Hadoop
components such as Metastore, HDFS, HBase, and YARN in order
to deliver an RDBMS-like experience.

2.1 Cloudera Impala
Impala is an open-source, fully-integrated, massively parallel pro-
cessing (MPP) SQL query engine designed specifically to lever-
age the flexibility and scalability of Hadoop. Impala’s goal is to
combine the familiar SQL support and multi-user performance of
a traditional analytic database with the scalability and flexibility
of Apache Hadoop. Impala works directly on data stored in HDFS

and Apache HBase. Impala keeps its table definitions in a tradi-
tional MySQL or PostgreSQL database known as the metastore,
the same database where Hive keeps this type of data. Thus, Im-
pala can access tables defined or loaded by Hive. Impala supports
several familiar file formats used in Apache Hadoop. Impala can
load and query data files produced by other Hadoop components
such as Pig or MapReduce, and data files produced by Impala can
be used by other components also.

To reduce latency such as that incurred from utilizing MapRe-
duce [24], Impala implements a distributed architecture based on
daemon processes that are responsible for all aspects of query exe-
cution and that run on the same machines as the rest of the Hadoop
infrastructure [28]. Impala’s high-level architecture is shown in
Figure 2.
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Figure 2. Impala Architecture

Impala deployment is comprised of three services - impalad,
statestored and catalogd [15]. The Impala daemon (impalad) ser-
vice is dually responsible for accepting queries from client pro-
cesses and orchestrating their execution across the cluster, and for
executing individual query fragments on behalf of other Impala
daemons. When an Impala daemon operates in the first role by
managing query execution, it is said to be the coordinator for that
query. In local mode,one Impala daemon is deployed on every ma-
chine in the cluster that is also running a datanode process - the
block server for the underlying HDFS deployment [13]. In remote
mode, HDFS and Impala daemons run in different nodes.

The Impala component known as the statestore checks on the
health of Impala daemons on all the nodes in a cluster, and contin-
uously relays its findings to each of those daemons. It is physically
represented by a daemon process named statestored and only needs
one such process on one node in the cluster. If an Impala node goes
offline due to hardware failure, network error, software issue, or
other reason, the statestore informs all the other nodes so that future
queries can avoid making requests to the unreachable node [19].

The Impala component known as the catalog service relays the
metadata changes from Impala SQL statements to all the nodes in
a cluster. It is physically represented by a daemon process named
catalogd and only need one such process on one node in the cluster.
Because the requests are passed through the statestore daemon,
typically both the statestored and catalogd services run on the same
node in the cluster.

The following is a brief account of the query execution proce-
dure in Impala:

1. The user selects a certain impalad in the cluster, and registers a
query by using impala shell and ODBC.

2. The impalad that received a query from the user carries out the
following pre-tasks:
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(a) It brings Table Schema from the Hive metastore and judges
the appropriateness of the query statement.

(b) It collects data blocks and location information required to
execute the query from the HDFS namenode.

(c) Based on the latest update of Impala metadata, it sends the
information required to perform the query to all impalads in
the cluster.

3. All the impalads that received the query and metadata read the
data block they should process from the local directory and
execute the query.

4. If all the impalads complete the task, the impalad that received
the query from the user collects the result and delivers it to the
user.

2.2 InfiniBand
InfiniBand is a high-performance networking interconnect that is
widely used for high performance computing. The latest TOP500
[9] rankings released in Nov. 2015 indicate that more than 47%
of the top 500 supercomputers are using InfiniBand as their pri-
mary interconnect. Remote Direct Memory Access (RDMA), one
of the main features of InfiniBand [20], allows a node to directly
access the memory of another remote node without any involve-
ment from the remote node. It features very high throughput and
very low latency [12]. Internet Protocol (IP) packets can be sent
via an InfiniBand interface by encapsulating the IP packets in an
InfiniBand packet via a network interface. This is known as IP over
IB (IPoIB). As long as the InfiniBand network has the necessary
driver installed, it creates an interface for each port and can then
transport IP packets across the InfiniBand.

2.3 BigDataBench
BigDataBench is an open-source benchmark suite for scale-out
real-world workloads [29]. BigDataBench provides a benchmark
software suite for various Big Data middleware such as Impala,
Spark, Hive, HBase, MySQL, etc. In representative big data work-
loads, BigDataBench focuses on units of computation that are fre-
quently appearing in the domains of OLTP, NoSQL, OLAP, inter-
active and offline analytics, graph computing, and streaming com-
puting [31]. It considers different kinds of data models with varied
types and semantics, which are extracted from real-world data sets.
It provides data sets in form of unstructured data, semi-structured
data, and structured data [23]. BigDataBench also provides an end-
to-end benchmarking framework to allow flexible benchmarking
by abstracting data operations and workload patterns. It can be ex-
tended to other application domains also. BigDataBench Version
3.1 is used in the experiments in this paper. BigDataBench has a
built-in data generation tool [16] where we can specify the amount
of data to be generated. For Impala applications, the generated data
is stored in HDFS.

3. Schemes for Evaluation
In this section, we discuss the different schemes used for evaluat-
ing performance of Impala on InfiniBand networks. Experimental
results for these dimensions are presented in Section 4. In all of the
schemes, the three BigDataBench Interactive queries (Scan, Ag-
gregate and Inner Join) are executed. Table and Column statistics
of the Inner Join tables are available so that Impala tries to optimize
the Inner Join Query.

It is important to design good evaluation schemes for BigData
software to measure its effectivess [10]. The evaluation strategy
involves multiple dimensions in how well Impala is evaluated. The
different dimensions evaluated in this paper are: 1) Query workload
characterization as I/O, Communication and Compute intensive, 2)

Running Impala in local and remote mode setups, ad 3) Study-
ing scalability of Impala on different queries which involves two
schemes, one is how well Impala scales out on adding more com-
pute nodes and second is how Impala performs on increasing the
datasize linearly keeping the number of compute nodes constant.
All these evaluations are done on InfiniBand cluster. Figure 3 shows
the different dimensions considered while evaluating Impala.
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Figure 3. Evaluation Dimensions

3.1 Local Mode Setup
Impala daemons are deployed in the same nodes as the HDFS
serving datanodes such that every node running HDFS datanode
also has impalad daemon running on it. HDFS short-circuit reads
are enabled by default which allows Impala to read local data di-
rectly from the file system. This removes the need to communicate
through the DataNodes thereby reducing network communication
and improving performance. After the query is executed, we run
profile command which gives the detailed breakup of query plan-
ning and execution. We use this scheme to characterize the Big-
DataBench workload as I/O, Communication or Compute inten-
sive. In this experiment we deploy both impalad and HDFS datan-
odes in 8 nodes and run experiments on 32 GB data.

The three main types of BigDataBench interactive queries run
are: Scan, Aggregate and Join. Below are the BigDataBench Impala
suite interactive queries run:

1. Scan - INSERT INTO TABLE result SELECT goods price,
goods amount FROM bigdatabench dw item3 WHERE
goods amount> 224000;

2. Aggregate - INSERT INTO TABLE result SELECT goods id,
sum(goods number) FROM bigdatabench dw item3 GROUP
BY goods id;

3. Inner Join - INSERT INTO TABLE result SELECT
bigdatabench dw order3.buyer id,
SUM(bigdatabench dw item3.goods amount) AS total FROM
bigdatabench dw item3 JOIN bigdatabench dw order3 ON
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bigdatabench dw item3.order id = bigdatabench dw order3.
order id GROUP BY bigdatabench dw order3.buyer id LIMIT
10;

The BigDataBench Impala suite also provides micro-benchmark
queries. Aggregate Avg and UnionAll queries are run from the
micro-benchmark suite as follows:

1. Aggregate Avg - Insert Into table result SELECT
AVG(goods number) FROM bigdatabench dw item2;

2. UnionAll - Insert Into table result SELECT * FROM
(
SELECT * FROM bigdatabench dw item3 WHERE
goods amount> 750000
UNION ALL
SELECT * FROM bigdatabench dw item3 WHERE
goods amount< 5
) temp;

3.2 Full Remote Mode Setup
In this mode, all the Impala daemons are deployed in nodes mu-
tually exclusive to the set of nodes where HDFS datanodes are de-
ployed. This achieves 100% remote mode since no impalad daemon
is running on the same node as HDFS datanode. As a result of this
setup, all the data has to be first transferred to the impalad nodes
across the network. This greatly increases the network communi-
cation time. As mentioned in the Impala development paper [19],
remote data storage case is common where the data is stored re-
motely in cloud services such as Amazon S3. The paper also men-
tions that legacy storage infrastructure based on SANs necessitates
a separation of computation and storage nodes, making Impala run
in full remote mode. In this mode we evaluate InfiniBand QDR (32
Gbps) and 10Gb Ethernet. InfiniBand is expected to speed up query
execution since the communication latency is reduced. In this ex-
periment we deploy 4 impalad nodes and 4 HDFS datanodes in sep-
arate nodes, and use 32 GB data. BigDataBench interactive queries
are run on this setup.

3.3 Increasing the Number of Compute Nodes and Fixing the
Datasize

The purpose of this scheme is to evaluate how scalable [17] Impala
is when the number of Compute Nodes is doubled. BigDataBench
interactive queries are run. We want to find out which queries
scale linearly, i.e. their query execution time is halved when the
number of Compute Nodes is doubled. In this experiment we fix
the datasize and vary the number of nodes. By Impala architecture,
it is expected to scale out but we can see interesting results as it is
dependent on the nature of the query. We fix the datasize to 64 GB
and vary the number of Compute Nodes from 4, 8 and 16.

3.4 Increasing the Datasize and Fixing the Number of
Compute Nodes

In this mode we fix the number of Compute Nodes to 8 and vary the
datasize from 16 to 64 GB. BigDataBench interactive queries are
run. We evaluate how the query execution time changes. For certain
queries we can expect the running time to double when the datasize
is doubled. However, the change in running time is also dependent
on the nature of query.

4. Performance Evaluation
In our evaluation, we used Cloudera Impala verion cdh5-2.3.0 5.5.0.
The source code is built from source and deployed in the clus-
ter. PostgreSQL is used as a database to store the Hive metadata.
Hadoop version used is 2.6.0 and Hive version is 1.1.0 which comes
along with the Impala codebase. The experiments were run on two
clusters:

1. Cluster A - Each node in the cluster has two 4-core 2.53 GHz
Intel Xeon E5630 (Westmere) processors and 24 GB main
memory. The nodes support 16x PCI Express Gen2 inter-
faces and are equipped with Mellanox ConnectX QDR HCAs
with PCI Express Gen2 interfaces. The operating system used
was RedHat Enterprise Linux Server release 6.4 (Santiago).
Each DataNode has a single 1TB HDD, single 300GB SSD,
and 12GB of RAM disk. For HDFS storage all three storage
medium RAMDISK, SSD and DISK are used. InfiniBand net-
work attached is QDR (32 Gbps). HDFS uses RAMDISK, SSD
and DISK all three storage medium. The InfiniBand network
card is QDR (32Gbps) and Ethernet used is 10Gb.

2. Cluster B - SDSC Comet Super Computer which is an XSEDE
cluster designed by Dell and San Diego SuperComputer. Each
compute node in this cluster has two twelve-core Intel Xeon
E5-2680v3 processors, 128GB DDR4 DRAM, and 320GB of
local SSD with CentOS operating system. Each node has 64GB
of RAM disk capacity. The network topology in this cluster
is 56Gbps FDR InfiniBand with rack-level full bisection band-
width and 4:1 oversubscription cross-rack bandwidth. The Eth-
ernet is 10Gb. Comet nodes have 7 petabytes of 200 GB/second
performance storage and 6 petabytes of 100 GB/second durable
storage. HDFS uses RAMDISK and SSD as storage medium.

Impala is run with HDFS Short-Circuit reads enabled. Impala by
default does a Broadcast Join. In all the results below Inner Join
means Inner Broadcast Join.

4.1 Local Mode Setup
In this section, we characterize the BigDataBench workloads -
Scan, UnionAll, Aggregate Sum, Aggregate Avg, Inner Broadcast
Join and Inner Shuffle Join as I/O, Computive or Network intensive.
Impala is deployed in local mode where both the impalad daemon
and HDFS datanode run on the same node. The experiments are run
on Cluster A on InfiniBand in IPoIB mode.

After we run the query, we issue the profile command in Im-
pala which gives the detailed breakdown of query planning [2],
execution and resource utilization. To measure I/O intensiveness
of a query, we see the stats of HDFS SCAN NODE in profile
which gives detailed stats such as BytesRead, BytesReadLocal,
PerReadThreadRawHdfsThroughput, and I/O time. To measure
the Communication intensiveness of a query, we see the stats in
DataStreamSender in profile which gives detailed stats such as
BytesSent, NetworkThroughput, TotalNetworkReceiveTime, and
TotalNetworkSendTime. To measure the Compute intensiveness of
a query, we see the stats of the query operator such as AGGRE-
GATION NODE and HASH JOIN NODE which gives further de-
tailed stats such as BuildPartitionTime, ProbeTime, BuildRowsPar-
titioned, and HashBuckets.

Figure 4 shows the workload characterization of different
queries. Impala breaks down the query into small fragments and
these distributed fragments are executed in parallel in the com-
pute nodes. The workload characterization graphs show how much
time was spent for I/O (HDFS Scan to read the data), Communi-
cation and Compute (Aggregate, Hash Join) for the fragments. For
example Aggregate Sum graph shows that in fragment 4, 147 sec-
onds were spent in Computation (Aggregation), 47 seconds spent
in HDFS Scan to read the read from HDFS and about 13 seconds
spent in communication in sending out the pre-aggregated results
to the co-ordinator node. This way we sum up the time spent on
each fragment and we can conclude if the query is I/O, Communi-
cation or Compute intensive. From this graph we see that the time
spend on Computation is more than Communication and I/O, i.e.
Computation time dominates both Communication and I/O. Hence
we categorize Aggreagte Sum query as Compute intensive. This
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makes sense because Aggregate Sum does not involve broadcast
of data across the network and only the pre-aggregated results are
sent out to the co-ordinator node across the network which is not
high volume data.

Table 1 shows the characterization of BigDataBench workloads
on Impala. BigDataBench provides software package for Impala
and the same queries in it are run here.

I/O Intensive Communication Intensive Compute Intensive
Scan

√
× ×

UnionAll
√

× ×
Aggregate Sum × ×

√

Aggregate Avg × ×
√

Inner Join (Broadcast) ×
√ √

Shuffle Inner Join 1 ×
√ √

Table 1. BigDataBench WorkLoad Characterization

For the Scan and UnionAll queries, it reads all of the data
locally and there is no aggregation involved in the query as it is
select-based query. Hence for this query, I/O dominates the overall
query execution time over Communication and Computation since
most of the time is spent in reading the data from HDFS. For the
Aggregate query, there is a Group By involved and hence it is
Compute intensive. Aggregate Avg is even more Compute intensive
since it divides the sum by the count of Group By operation.
Inner Join in Impala is by default Broadcast Inner Join where the
smaller data table is sent to all the nodes in the cluster across
the network making it Communication intensive. Inner Join also
involves a lot of Computation to do the matching of tuples based
on Join predicates and extract the Inner Join results. This explains
why Inner Join is Compute and Communication intensive. Shuffle
Inner Join is the most Compute intensive workload and is less
Communication intensive compared to Broadcast Inner Join. In
Shuffle Inner Join we observed that more number of Send and
Receive of data takes place but the amount of data sent or received
is small compared to Broadcast Join since Shuffle Join partitions
the table data into smaller segments and sends the Hash of it to
other nodes. Since Shuffle Inner Join works on the hash of data we
see it performs better than Broadcast Inner Join. Figure 5 shows
the comparison of Broadcast (Default) and Shuffle Inner Joins in
Impala.

4.2 Full Remote Mode Setup
In full remote mode, all the impalad daemons run in different nodes
to HDFS datanodes. These experiments are run on Cluster A. Here
impalad daemons are launched on 4 nodes and 4 HDFS datanodes
are launched in different set of nodes. So every query first needs to
fetch the data from remote data storage location across the network
to the impala nodes. Hence we see lot of network communication
in this case. The cluster has 10Gb Ethernet network interface card
and InfiniBand QDR (32 Gbps). Figure 6 shows the comparison of
BigDataBench Interactive queries on InfiniBand (IPoIB mode) and
Ethernet networks.

From the performance results, we see Scan performs better on
InfiniBand by 21% compared to Ethernet. This is because of the
network transfer involved in fetching the data stored in remote lo-
cation. Aggregate Sum benchmark performs better on InfiniBand
QDR by 27% compared to 10Gb Ethernet. The benefit is more
here because Aggregate involves sending the pre-aggregated re-
sults across the network to the co-ordinator node for final merge,
which adds to the network communication along with the remote
data fetch. Inner Join benchmark on InfiniBand is better only by 8%
compared to Ethernet because computation dominates over com-
munication since performing the Inner Join matching with all the

1 This is a new query that can be added to BigDataBench Impala software
package that evaluates Shuffle based Inner Join in Impala.

tuples of the smaller table is computation intensive. Table and Col-
umn statistics of the Join tables were made available so that Impala
tries to optimize the Join Query.

Figure 7 shows the network communication time of InfiniBand
and 10Gb Ethernet. Interesting thing seen from the results is that
even though the Inner Join query network communication latency
and throughput on InfiniBand was better than 10Gb Ethernet by
19%, this entire benefit is not reflected in the overall query execu-
tion time due to Inner Join computation.

4.3 Increasing the Number of Compute Nodes and Fixing the
Data Size

These experiments are run on Cluster B. Figure 8 shows the Scal-
ability of Impala in IPoIB mode on InfiniBand FDR for 64 GB
datasize on 4, 8 and 16 compute nodes.

From the performance results we see that Scan and Aggregate
(Sum) workloads scale linearly on increasing the number of com-
pute nodes. We see that the query execution times of Scan and Ag-
gregate Sum reduce by approximately 50% on doubling the number
of compute nodes from 4 to 8 and 8 to 16. But the improvement in
the execution time of Inner Join is negligible since Impala by de-
fault does a broadcast Inner Join where the full smaller table data is
sent to all the compute nodes. Hence adding more nodes means so
many additional copies of data is transferred across the network and
at each node the Inner Join matching needs to be done with all the
tuples of the smaller table. Hence adding more nodes adds overhead
in network communication and compution, which significantly re-
duces the benefit gained by increased parallelism on adding nodes.

Figure 9 shows the Scalability of Impala on 10Gb Ethernet for
64 GB datasize on 4, 8 and 16 compute nodes. From the results we
see that Inner Join scales poorly on Ethernet as well. In fact from
the query execution time, we see Inner Join scales slightly better on
InfiniBand compared to Ethernet.

4.4 Increasing the Data Size and Fixing the Number of
Compute Nodes

These experiments were run on Cluster B. In this experiment, we
want to evaluate how Impala performs on increasing the datasize
keeping the number of compute nodes constant. The experiments
were run on InfiniBand FDR in IPoIB mode. Figure 10 shows the
evaluation results on 8 compute nodes varying the datasize from
16, 32 and 64 GB.

From the evaluation results we see that the execution times of
Scan and Aggregate (Sum) workloads increase by average 90% on
doubling the datasize from 16 GB to 32 GB and 32 GB to 64 GB.
An interesting observation is that the execution time of Inner Join
increases by 99% on doubling the datasize from 16 GB to 32 GB,
but increases by 200% doubling the datasize from 32 GB to 64
GB. The results show that broadcast Inner join of Impala scales
poorly on increasing the datasize since it increases the network
data transfer due to broadcast operation and also increases the Join
computation since it has to do a matching with all the tuples in the
smaller table at each compute node.

5. Related Work
Recent studies in Big Data show that Impala performs faster than
MapReduce frameworks such as Hive and Tez. This is because
Impala uses massive parallel processing (MPP) engine and not
MapReduce and thereby avoids the overheads of two phase execu-
tion model of MapReduce. Moreover, in MapReduce, the interme-
diate map outputs are spilled to disk which results in performance
degradation, whereas Impala tries to do most of its computation in
memory. Impala is faster than Apache Hive but Impala does not
provide one stop SQL solution for all big data problems. Impala
is memory intensive and does not run effectively for heavy data
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(a) Scan
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(b) UnionAll
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(c) Aggregate Sum
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(d) Broadcast Inner Join
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(e) Aggregate Avg
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(f) Shuffle Inner Join

Figure 4. Workload Characterization of Queries
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Figure 5. Query Execution of Broadcast and Shuffle Inner Joins
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Figure 6. Query Execution on Different Networks
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Figure 7. Network Communication Part of Inner Join Query Exe-
cution
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Figure 8. Scalability over Nodes on InfiniBand
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Figure 9. Scalability over Nodes on Ethernet
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Figure 10. Scalability over Datasize

operations like joins because it is not possible to push in every-
thing into the memory. This is when Hive comes to the rescue. If
an application has batch processing kind of needs over big data then
organizations must opt for Hive [14]. If real time processing of ad-
hoc queries [26] on subset of data is needed then Impala is a better
choice.

Earlier versions of Impala supported pure in-memory queries
meaning that the query execution would fail if the data could not
fit into memory. Recently Cloudera has added spill to disk feature
which enables data to be spilled to disk in case it cannot fit in
memory. Impala tries to intelligently avoid disk access by spilling
to disk data that may not be referenced again. Impala provides
faster query responses by holding as much data as possible in
memory.

Recently Apache Software Foundation (ASF) announced that it
has taken Cloudera Impala as an incubating project [7]. This means
that Impala project development will be moved more and more to
the ASF and adopt the open standards of Apache as the manner in
which Impala will be next developed.

In recent years, modern interconnects such as InfiniBand, have
seen increased usage for HPC and Big Data Systems. InfiniBand
provides native support for RDMA (Remote Direct Memory Ac-
cess) feature. RDMA supports zero-copy networking by enabling
the network adapter to transfer data directly to or from application
memory, eliminating the need to copy data between application
memory and the data buffers in the operating system. The HiBD
project [8] at The Ohio State University has made HDFS [18],
MapReduce [30] and Hadoop RPC [21] RDMA capable. From
the performance results we see RDMA benefits these components.
The project has also made Apache Spark [22], another popular
Big Data software, RDMA capable and see good benefits in perfor-
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mance. RDMA versions of these software are released in the HiBD
website and are free to download. These results show that Big Data
applications can benefit from InfiniBand RDMA feature if the Big
Data Application is Communication intensive.

6. Conclusion and Future Work
In this paper, we characterize Cloudera Impala workloads with Big-
DataBench on InfiniBand clusters. BigDataBench queries for Im-
pala are characterized as I/O, Communication or Compute inten-
sive by running them in local mode on an InfiniBand QDR clus-
ter. Experimental results show that Scan and UnionAll queries are
I/O intensive, Aggregate Sum and Aggregate Avg queries are Com-
pute intensive, and for Inner Join queries Computation outweights
Communication. Remote data storage mode for Impala is common
where the data is stored remotely, such as in cloud services (e.g.
Amazon S3). In remote data storage setup which is more Commu-
nication intensive as the data has to be transferred across the net-
work, we observe that Impala performs better on InfiniBand QDR
(IPoIB) network compared to 10Gb Ethernet - Scan by 21%, Ag-
gregate by 27%, and Inner Join by 6%. Communication part of In-
ner Join Query on InfiniBand QDR is better than 10Gb Ethernet
by 19%. Although Inner Join is Communication intensive, we do
not see much difference in overall execution runtime of the query
on InfiniBand and 10 Gb Ethernet since Computation dominates
for doing the Inner Join matching to produce the Join results. We
also evaluate scalability of Impala on Comet XSEDE cluster with
InfiniBand FDR and observe that Scan and Aggregate query work-
loads can scale linearly. Results show that Inner Join query benefits
are negligible on adding more compute nodes since it increases the
Join Computation. From these experiments we can conclude that
InfiniBand improves the Communication part of Inner Join queries
but the overall execution of the Inner Join query needs to be further
enhanced. As future work we plan to change the Communication
layer of Impala to InfiniBand RDMA and study the associated ben-
efits.
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[25] W. Rödiger, T. Mühlbauer, A. Kemper, and T. Neumann. High-Speed
Query Processing over High-Speed Networks. Proceedings of the
VLDB Endowment, 9(4):228–239, 2015.

[26] R. Saltzer, I. Szegedi, and P. De Schacht. Impala in Action: Querying
and Mining Big Data. 2015.

[27] S. Wadkar and M. Siddalingaiah. Data Warehousing Using Hadoop.
In Pro Apache Hadoop, pages 217–239. Springer, 2014.

[28] S. Wanderman-Milne and N. Li. Runtime Code Generation in Cloud-
era Impala. IEEE Data Eng. Bull., 37(1):31–37, 2014.

[29] L. Wang, J. Zhan, C. Luo, Y. Zhu, Q. Yang, Y. He, W. Gao, Z. Jia,
Y. Shi, S. Zhang, C. Zheng, G. Lu, K. Zhan, X. Li, and B. Qiu.
BigDataBench: A Big Data Benchmark Suite from Internet Services.
In 2014 IEEE 20th International Symposium on High Performance
Computer Architecture (HPCA), pages 488–499, Feb 2014.

[30] M. Wasi-ur Rahman, N. S. Islam, X. Lu, J. Jose, H. Subramoni,
H. Wang, and D. K. Panda. High-Performance RDMA-based Design
of Hadoop MapReduce over InfiniBand. In Parallel and Distributed
Processing Symposium Workshops & PhD Forum (IPDPSW), 2013
IEEE 27th International, pages 1908–1917. IEEE, 2013.

[31] J.-M. Zhao, W.-S. Wang, X. Liu, and Y.-F. Chen. Big Data Benchmark
- Big DS. In Advancing Big Data Benchmarks, pages 49–57. Springer,
2013.

2016/3/28


